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ABSTRACT
Intelligent robot is the ultimate goal in the robotics field. Existing works leverage learning-based or optimization-based methods
to accomplish human-defined tasks. However, the challenge of enabling robots to explore various environments autonomously
remains unresolved. In this work, we propose a framework named GExp, which endows robots with the capability of exploring and
learning autonomously without human intervention. To achieve this goal, we devise modules including self-exploration, knowledge-
base-building, and close-loop feedback based on foundation models. Inspired by the way that infants interact with the world, GExp
encourages robots to understand and explore the environment with a series of self-generated tasks. During the process of exploration,
the robot will acquire skills from experiences that are useful in the future. GExp provides robots with the ability to solve complex
tasks through self-exploration. GExp work is independent of prior interactive knowledge and human intervention, allowing it to adapt
directly to different scenarios, unlike previous studies that provided in-context examples as few-shot learning. In addition, we propose
a workflow of deploying the real-world robot system with self-learned skills as an embodied assistant. Project website: GExp.com.
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Not only for humans[1, 2], autonomous exploration and
learning are equally important for robots[3], which is
a sign of robot intelligence[4]. Autonomous robots

can not only liberate people from hard or dangerous labor but
also complete some daily and ubiquitous tasks, such as cloth-
folding[5, 6, 7], cooking[8, 9], and cleaning[10, 11, 12]. However, the
design of robots with autonomy is very challenging. While
robots can complete some tasks with the help of reinforcement
learning[13], imitation learning[14], and other methods, they are
only capable of dealing with related tasks and cannot learn by
themselves. Despite these methods have achieved outstanding
results, they constrain the automatic learning ability of robots
and it is difficult to achieve real intelligence only with these
methods.

Recently, the birth of Large Language Models (LLMs),
such as GPT-4[15] and Llama 2[16], provides new paths to
intelligence. LLMs have not only propelled the development
of artificial intelligence technology but have also significantly
enhanced the decision-making and task-planning capabilities
of robots. There is a growing body of research utilizing LLMs to
address existing robotics challenges, as evidenced in previous
studies[17, 18, 19]. However, most existing methods rely heavily
on detailed, complete prior information and the provision of
human-specific in-context examples. This dependency often

limits the robots’ generalization capabilities across diverse
environments.

On the other hand, there are studies demonstrating the
potential of creating autonomous agents based on LLMs[20, 7],
which are capable of independently and continuously resolving
problems[21, 22]. A notable example is Voyager[22], which
presents an embodied agent operating within a Minecraft
virtual environment. Nevertheless, these agents, built upon
LLMs, interact with their environment through textual feed-
back, which hinders practical applications in robotics. The
recent advancements in vision-language models have been par-
ticularly significant, showcasing the potential for general object
recognition and understanding of spatial relationships[23, 24].
This progression opens up new possibilities for robotics,
allowing for more nuanced and adaptable interactions with
various environments.

To facilitate autonomous exploration and learning in
robots, we introduce an innovative framework named GExp,
which is predicated on the use of foundational models. As
shown in Fig. 1, the framework is inspired by the growth
process of infants. Newborn babies begin with an incomplete
understanding of the world’s logic, gradually perceiving the
world through their vision and interacting with it physically,
leading to progressive development. Similarly, in GExp, pre-
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trained foundational models are employed to assist the robot in
navigating and learning within unfamiliar environments. With
an understanding of the environment with VLM, robots will
generate tasks and try to solve them with the ability of LLM.
Throughout the exploration phase, the robot will learn from
successful experiences by generating relevant skills in a zero-
shot manner. These skills are continuously collected into a
comprehensive library, allowing the robot to tackle increasingly
complex scenarios.

Fig. 1 An infant-inspired framework for autonomous robotic
exploration (From left to right: pick blocks, stack blocks, open
drawer, classify objects).

The contribution of the article mainly includes:

• A framework for robot autonomous self-exploration is
proposed, which does not require the imposition of
specific human-defined tasks, nor does it necessitate any
prior knowledge about the environment. Its primary
function is to facilitate continuous and independent
exploration by the robot.

• In our approach, we enable robots to learn during
exploration by leveraging successful experiences. This
is achieved through the use of LLM, which assists in
generating general skills in a zero-shot manner. The
skills thus developed not only enhance the robot’s
capacity to solve increasingly complex tasks encountered
during exploration but also expand the boundaries of its
abilities.

• We created a self-verificationmodule using a pre-trained
VLM to analyze and determine task execution success.
This evolves into ”backtracking control” enabling the
robot to verify each task step’s success by assessing
preconditions. This ensures actions align with the
overall task objective, enhancing the robot’s precision
and effectiveness.

• To evaluate the exploration and self-learning capabilities
of the robot effectively, we conduct a series of experi-

ments specifically designed to validate the feasibility and
effectiveness of our proposed framework.

1 Related Works

Foundation Models For Robotics. The evolution of Large
Language Models (LLMs) has significantly transformed the
robotics field, particularly in areas such as task planning[25, 26],
robot action generation[27], and code development[18, 28]. These
models have proven effective in integrating with traditional
motion planning algorithms[17] or reinforcement learning[29],
enhancing capabilities in multi-modal information processing,
multi-robot coordination, and human-robot collaboration.
Another kind of foundation model, vision-language models
(VLMs)[30, 31, 25], also fast developed recently and many
researches have been conducted to discuss its impact in
robotics[23]. Our work combines the LLM and VLM to
construct an autonomous embodied agent with the ability to
explore the real world.

Language Models For Task and Motion Planning. Long-
horizon planning problem is one of the key research areas in
robotics[32]. Conventional methods are mainly based on op-
timization and reinforcement learning methods[33]. Recently,
some researchers utilized LLM as the core of robots to divide
sub-tasks or generate high-level plans for task and motion
planning[19, 26, 28, 34]. To help the LLM better understand the
given task and reduce the hallucinations in generating plans,
in-context examples are used in most of the relevant works.
However, this could reduce the generalization ability, since
those examples should be collected manually for a given envi-
ronment. We are trying to improve the generalization ability of
LLM-based planning problems by designing a framework for
robot self-exploration.

2 Method

2.1 Grow from Exploration

Assuming a robot faces an unfamiliar environment, it
is not provided with any human-specific tasks and prior
knowledge about the environment. The robot can observe
the environment with an RGB-D camera and interact with the
objects in the environment with a robot arm. Our goal is to let
robots autonomously interact with the environment to explore
the boundaries of their abilities. To reach that goal, a robot
should understand the environment, generate tasks by itself,
make plans, and interact with the environment to find out the
feasibility of generated plans.

A. Scene Understanding and Tasks Generation

In our setting, the robot does not have access to any prior
information about the environment. Therefore, robots need to
first perceive and understand their surroundings. We leverage
VLMs to characterize the information in the scene with an
image as input. The purpose of scene understanding can be
divided into two parts: identifying observed objects with their
attributes and generating relation descriptions that explain the
relative positions of different objects.

2 CAAI Artificial Intelligence Research | VOL 1| March 2022| 1–5



Growing from Exploration ARTICLEGrowing from Exploration ARTICLEGrowing from Exploration ARTICLE

Fig. 2 Robot exploration framework GExp. GExp allows robots to actively explore the new environment by observing the environment,
generating feasible tasks, solving those tasks independently, and verifying the success of execution. During the process of exploration,
GExp maintains and updates a skills library by reflecting on successful tasks and generating task-related skills.

After obtaining the scene description and information
about the objects in the space, the robot will ask LLM
to generate a series of manipulation tasks to explore the
environment and possibly feasible skills. A task is characterized
by its name, related objects, and a detailed description. To
ensure efficient task generation, we employ an object-related
principle. This principle stipulates that each generated task
must contain at least one observed object, preventing LLM
from generating some useless tasks. Inspired by the growth
of infants and curriculum learning, we also prompt LLM to
generate structured tasks from simple to complex. Simpler
tasks typically involve operations on individual objects and
are characterized by straightforward descriptions and a limited
number of steps. Complex tasks involve multiple objects and
normally relate to long-horizon planning.

B. Planning and Executing

LLMs have strong reasoning and planning abilities. It has
also been proved that LLMs are capable of grounding a high-
level plan into several sub-actions. Motivated by these, we
developed a module that uses LLM as a planner and controller.
LLM is given a self-generated task and a library of acquired
skills and outputs a high-level plan with an action sequence that
is composed of the acquired skills. These skills can be in any
form, such as trained policy through Reinforcement Learning
Imitation Learning, or just code. In this paper, we choose code
as the form of skills for simplicity. To improve the reasoning
ability of LLM, we utilize chain-of-thought (CoT)[35] in the
process of plan generation. In this paper, we choose code as
the form of skills, as code can be directly generated by LLM
without extra training or human demonstrations. However,
using code for grounding has limitations in complex motion
planning, which is not the main focus of our work.

During the exploration, the robot will also maintain a

skill library that contains all acquired skills. The skill library
is kept updated by LLM generating a new one when the task is
completed. The following functions are predefined in the initial
skill library as primitive functions:

• movep(position): Move the end-effector of the robot to
a given position.

• close_gripper(): Close the gripper to grasp an object.
The gripper is initially open.

• open_gripper(): Open the gripper to place an object.

• get_obj_position(object_name): Get the position of an
object with the given name. The output of this function
is a tuple of object position (x, y, z).

• go_home(): Move the gripper to the home position.

The choosing principles of those are generalization and
simplicity. From the perspective of generalization, those skills
should be required by most manipulation tasks and can be
easily defined for any robot system. From the perspective of
simplicity, we want to inspire robots to generate more high-
level and task-specific skills based on those simple skills, instead
of heavily relying on human-specific actions. Except for those
functions, we also define the robot arm’s available working
space for safety reasons:

• BOUNDS: The available working space in three dimen-
sions, [[xmin, xmax], [ymin, ymax], [zmin, zmax]].

C. Verification and Error Correction

After implementing the generated plan, it is crucial to
verify its success. The GExp operates autonomously based on
foundation models, thus excluding any human involvement in
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confirming the success of the implemented manipulation plan.
To ascertain whether the task has been completed successfully,
foundation models serve as success detectors.

We utilize two different methods for self-verification:
code-based method and vision-based method. The former
one, utilizing the reasoning and code-creating ability of LLM,
generates a success detection function based on the description
of the given task. The vision-based method leverages advanced
VLMs (GPT-4V) to judge whether the task requirement is
satisfied. It is worth mentioning that existing VLMs have
limited capability in object detecting, semantic grounding,
and relation understanding. To improve its performance, we
provide VLM with a final state observation image and initial
state description (generated at the scene understanding stage).
This can significantly help VLM make correct answers in
success verification.

In the event of a plan failure due to errors, GExp
will attempt to solve them. Errors can be divided into
two categories: interpretation errors and grounding errors.
Interpretation errors occur during the code generation phase
and include syntax errors, which breach programming language
rules, and invalid instance errors, characterized by the use of
undefined variables or functions. The grounding errors are
associated with the execution phase of the code. Common
grounding errors include manipulating with object in a gripper
and directional misjudgments.

Our approach to addressing these two types of errors
differs. For interpretation errors, we solve them by letting
LLM regenerate the code without changing the plan. This is
achieved by providing the LLM with the error code with a
corresponding error message. Results show that in most cases,
these interpretation errors can be rectified in a single iteration.
The second type of error, grounding error, can be detected by
self-verification but hard be corrected by LLM itself without
human intervention. We take an iterative plan-exploration
strategy: regenerating the high-level plan by modifying the
existing one. LLM is required to modify the current plan.
However, it should be mentioned that not all self-generated
plans are feasible to solve or exceed the current capabilities of

foundation models.

D. Reflection and Skill Acquirement

If the success of the task has been verified, LLM is required
to reflect the generated plan and code to refine a skill function
with the following rules:

• The created function should be general, which makes
sure the function can be more likely to be used in further
tasks.

• The LLM should generate the description of the new
function, including its usage, input, and output.

• The current task should be resolved by using a new func-
tion, which serves as an example for further utilization.

Once the function has been generated, it should be first checked
with no syntax error and then updated to the skills library.

E. Prompting Design

The following rules are followed when designing the
prompt:

• Format regularization: To ensure the stability of the
system, all outputs of LLM follow the JSON format. This
is realized by providing a format example in the system
prompt.

• Prompt iteration: When the robot generates a new skill
function from the interaction with the environment,
the prompt should iterated to keep consistent with the
current skills library.

• Generalized prompt: As one of themainmotivations, we
do not include any prior information about the environ-
ment and in-context examples. The framework can be
applied to different environments without modifying the
prompt.

2.2 How Acquiring Skills Strengthen Robot?

Foundation models have been pre-trained with tons of
data from the internet. However, when they are used for
planning complex real-world problems, their performances
are influenced by hallucinations. The performance can be
improved by providing in-context examples by humans, while
we want the robot to enhance its ability by learning from
experiences in exploration.

Denote the set of manipulation tasks can be per-
formed by combining provided primary functions is S∗

Π0
=

{T ∗
1 , T

∗
2 , ..., T

∗
n}, the probability that LLM successfully finish

the task T ∗
i is PLLM (T ∗

i |Π0). The goal of self-exploration is
enabling the robot to automatically learn several skillsΠ during
the process of interaction between real-world environments to
make

∑
i PLLM (T ∗

i |Π) >
∑

i PLLM (T ∗
i |Π0).

As introduced in the previous sections, the skill-collecting
module can facilitate the exploration process. The robot can
use previously generated skills to solvemore complex problems.
The generated skills form a tree structure: any new skill can

be realized by the combination of basic skills (functions), and
generated skills are also interrelated to each other. When the
creation of skills is finished after one or multiple explorations,
the skills library can be edited manually by deleting redundant
skills or further distilled with LLM when combined with other
skills libraries.

2.3 Deployment after Exploration with Backtracking Con-
trol

After the robot explores one or more scenes, it is equipped
with a self-learned skills library and able to complete user-given
tasks within its capabilities. Different from exploring with self-
generated tasks, the robot is provided with free-from-language
instruction, such as ”Clean the table” and ”Where is my cup”.

To deploy the robot after exploration, we utilize the
workflow shown in Figure 3. Inspired by the idea of ReAct
[36], the robot is controlled by a controller powered by LLM
which will continuously switch between observer module and
executor module, until satisfying the user’s requirement. When
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Algorithm 1 Learn Skills through Exploration
Input: Initial visual observation x0, initial skills library with basic actions Π = Π0, scene language description l, observed
objects O1:j

Output: Refined skills library Π
1: l, O1:j = VLM(x0) ▷ See Appendix 1.1
2: T1:k = LLM(l, O1:j) ▷ See Appendix 1.2
3: for Ti in T1, ..., Tk do
4: T = Ti, t = 1
5: while t < num_retries do
6: p, a1:N = LLM(T , Π) ▷ See Appendix 1.3
7: Execute plan p with actions a1:N
8: flag_success = VLM(xi) ▷ See Appendix 1.4
9: if flag_success then

10: π = LLM(p, a1:N , Π) ▷ See Appendix 1.5
11: Π = Π ∪ {π}
12: break
13: else
14: t = t + 1
15: end if
16: end while
17: end for
18: return Refined skills library Π

receiving user instructions, the controller will judge if the user
has been provided with enough information to generate an
executable plan. When information is sufficient, the controller
will call the executor module with an executable task as input
(same format as the self-generated one in exploration). The
executor module will first analyze the given task referring to
the whole skills library, and then generate a high-level plan
with controlling code. Otherwise, the observer module will
be evoked to ground the user specification with environment
information. The input of the observer module is a query string
generated by and the observer will try to answer it based on
VLM. This process will continue until the controller believes
the user requirement is satisfied or can not be realized.

When a robot executes its generated plan, there exists the
possibility that some steps are not successfully implemented
due to errors and online disturbances. We propose back-
tracking control in the executor module, which automatically
generates a precondition for each step, verifies the result of each
step, and backtracks to the appropriate step. As shown in Fig 3,
LLM will generate a precondition for each step by considering
its context such as the target task and plans for completing
this task. We organize the preconditions as object-description
text, characterizing the relation between objects or the state of
objects. For example, ”plate on the microwave” describes the
relationship between plate and microwave, and ”top drawer is
open” describes the state of the top drawer. The verification
process utilizes VLM, which is the same as vision-based task
verification introduced in Section . If the precondition is not
satisfied, the robot will retry by backtracking, that is going back
to the nearest step whose precondition meets the current state.
Then robot will start from that step and retry the task. We find
that the successful rate and robustness of completing a task are
significantly improved by absorbing such a close-loop method.

Fig. 3 The proposed backtracking control method. Precondition is
generated for each step which is used to verify if the step executes
successfully by VLM.

3 Experiments

The experiments are designed to validate the following
questions:

• Is the proposed framework capable of efficiently guiding
a robot to proactively engage with its surroundings and
continually develop new skills, thereby enhancing the
exploration process?
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• Whether the proposed framework has a certain degree of
generalization ability? This means that it can be applied
to different scenarios and collect useful skills. These
skills should be further used to solve related tasks after
exploration.

• Can we deploy a robot system in the real world that
utilizes skills learned from GExp to accomplish a task
specified by the user?

3.1 ”BLOCKS WOLD”

For the first question, we build the ”BLOCKS WOLD”
table-top simulation scenario based on RAVENS [37], where six
blocks with different colors are placed on the table and a UR5
robot arm is used to interact with the environment. We use
”BLOCKS WOLD” for the experiment An ablation experiment
is conducted during the process of self-exploration. We
compare the proposedmethodGExpwith a frameworkwithout
collecting skills and a framework without self-verification.

Task w/o learn
skills

w/o self-
verification GExp

Move one block 0.8 0.4 0.8
One two-blocks stack 0.6 0.9 1.0
Three two-blocks stack 0.4 1.0 1.0
One three-blocks stack 0.1 0.7 0.8
Three blocks pyramid 0.0 0.5 0.7
Six blocks pyramid 0.0 0.4 0.7
Average 0.32 0.25 0.83

Table 1 Ablation evaluation results of GExp in ”BLOCKS WOLD”.
The value in the table represents the successful rate of 10 runs.
Results show that skills learning and self-verification can facilitate
the process of exploration.

Six different tasks are generated by GExp in ”BLOCKS
WOLD”: pick-and-place single block, one two-block stack,
one three-block stack, three two-block stacks, a pyramid with
three blocks, and a complex pyramid with six blocks. The
details of generated tasks can be found in Appendix 2.1. After
accomplishing one task, GExp will generate a related skill for
further use (see Appendix 2.2).

We report the results in Table 1. As the beginning
task, moving one block could not be realized successfully
because the robot moved the block before lifting it. The
self-verification module could help to correct the plan by
regenerating it. The following three tasks (blocks stack)
show the significant difference between planning with and
without using self-generated skills. The last two tasks (pyramid
building) go beyond the planning and reasoning ability of LLM
with predefined skills. However, GExp enables the robot to
solve these complex, long-horizon planning challenges. The
average successful rate shows that GExp achieves 0.51 and 0.58
improvement compared with removing skills learning and self-
verification modules respectively.

3.2 Everyday Robotics Tasks

To answer the second question, we conduct a series of
experiments in RLBench [38] to evaluate the generalization
ability of GExp. As shown in Figure 8, nine different scenes
are chosen, including Turning on a Lamp, Pressing Buttons,
Moving Object to Containers, Clearing Rubbish, Arranging
Bookshelf, Arranging Cupboard, Manipulating Drawer, Ma-
nipulating Microwave, and Placing Cup to Cabinet. The
detailed information of different scenes is listed in Appendix
3.1.

Fig. 4 Skills acquirement process in RLBench. The number of acquired skills increases as the robot explores different environments.

We first let robots interact with the environments and
acquire skills through self-exploration. We arrange 9 environ-
ments above according to manipulation complexity and record
the number of acquired skills in each environment and the

total number of acquired skills across all environments. As is
demonstrated in Figure 4, after the exploration phase, the robot
manages to acquire 1 to 4 skills in each environment, with a total
of 23 skills across all environments. This result shows that GExp
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can drive robots to acquire skills efficiently by exploration.
Furthermore, we find that there is a relation between the
number of acquired skills and the number of objects in the
environment, partially because foundation models tend to
generate sequential tasks that involve multiple objects.

To evaluate the quality of collected skills in GExp, we
set up 2 complex tasks: Desktop Organization and Cup
Acquisition. Desktop Organization involves many objects and
needs relatively long-horizon planning. Cup Acquisition only
involves two objects but the manipulation steps are highly
correlated, which means that the success of subsequent actions
depends on the success of the current action. More details about
the environments can be found in Appendix 3.1. We compare
GExp with a baseline that is the same as GExp but without
backtracking control to show the importance of closed-loop
control. We employ the acquired skills to complete these 2 tasks
and evaluate the success rate. Moreover, the two tasks can be
divided into several sub-tasks, and we also report the success
rate of the sub-tasks.

As is shown in Table 2, GExp outperforms baseline in
2 tasks and almost all sub-tasks, especially in difficult sub-
tasks such as Clear Rubbish and Close Drawer. During the
experiment, we found that backtracking control could detect
failure and retry the task, which significantly improves the
successful rate of completing the whole task. This is particularly
beneficial to CupAcquisition since this task is highly correlated.
We show some backtracking control cases in Appendix 3.2.

There are also some failures. For example, in Cup Acquisition,
the drawer is regarded as a table sometimes, causing failures
in self-verification. It explains why the successful rate of
Pick&Place Cup is only 0.5 when using backtracking control.
With the development of foundation models, we expect this
problem to be mitigated. We include more details in Appendix
3.2.

Task Open-Loop Backtracking

Desktop Organization 0.55 0.85
Clear Rubbish 0.60 0.90
Place Tomato1 0.85 0.95
Place Tomato2 0.95 1.00
Place Chocolate Jello 0.90 0.90
Place Strawberry Jello 1.00 1.00
Cup Acquisition 0.20 0.45
Open Drawer 0.65 0.90
Pick&Place Cup 0.25 0.50
Close Drawer 0.60 0.85

Table 2 Open-loop vs. backtracking. We evaluate the performance
of robot real-solution on two specially designed tasks. Results show
that the proposed backtracking method can significantly improve
the successful rate of execution.

3.3 Real-world Deployment

Fig. 5 Real-world Deployment: cup acquisition and desktop organization.

For the last question, we set up a real-world tabletop
environment letting robot letting robots use a self-learned skills
library to accomplish user instruction. As shown in Figure 5,
a UR5 robot arm with 6-DoF equipped with a suction gripper
is placed on the table, which can be controlled by using skills
learned in Section 3.2. We use a RealSenceD415 for perception.
The captured RGB image can be used for scene understanding
(realized by GPT-4V) and object position acquisition (realized
by VLMs including ViLD [39] and Segment Anything [30]).

We sim-to-real two evaluation tasks introduced in Section
3.2: Desktop Organization and Cup Acquisition. Different
from directly providing a specific task in a simulation environ-
ment, a free-form language instruction is given which needs
to be transferred into tasks using the workflow introduced in
Section 2.3. To further evaluate the generalization ability of
GExp, we use objects that are different from those learned in
the exploration. For instance, the cup is replaced by a tea caddy,

and the objects in the clean table task are a remote controller,
plastic bottle, paper, and toy box. Based on the results, we
find the proposed framework can successfully transfer user
instruction to feasible tasks. The skills can be chosen correctly
from the self-learned library and realized the task successfully.
The commonsense knowledge of GPT-4V also empowers the
self-learned skills generalization ability, where they can be used
to manipulate objects not seen before. The experiment log can
be found in Appendix 4.1 and 4.2. The videos of real-world
experiments can be found on our project website: GExp.com.

4 Conclusion, Limitations and Future Work

In this paper, we propose GExp, a novel framework for
robot self-exploration utilizing the power of foundationmodels,
which enables robots to explore and learn autonomously
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without human intervention. To achieve this goal, we devise
modules including self-exploration, knowledge-base-building,
and close-loop feedback based on foundation models. To
validate the effectiveness of the framework, we designed a
series of simulation experiments and deployed the framework
on a real robot platform. Our results show that GExp allows
robots to explore autonomously and learn from exploration by
generating useful skills. Based on this framework robots can
learn autonomously without relying on human guidance, which
is a milestone in the development of robotic intelligence

The main limitation of our method is reliance on the
power of foundation models. We find that there still exists a
gap between the current ability of foundation models and the
requirement of designing a robust and stable system based on
them for robotics tasks. GExp is one attempt to implement
foundation models enhancing autonomous robots. In the
future, we will try to combine learning-based methods into this
framework for low-level robot control. We believe the further
development of foundation models could further improve the
performance of GExp, allowing it to be applied to a wider range
of robotics tasks.
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Appendix

1 Modules in GExp

1.1 How GExp understand the environment?

Prompt of scene understanding

You will be given a picture of table-top scene observation of robot
system. You need to give a description about the picture. The
description should contain following information:
* What objects are on the table. Please describe those objects.
* You do not need to describe the robot arm, please focus on other
objects you observed.
You should output your answer in a json format. The output
format should be:

‘‘‘json
{
”Description”: ”Describe what you have

observed on the table.”,
”Objects on table”:[

{
”Name”: ”The name of object”,
”Color”: ”object’s color”,

},
]

}
‘‘‘
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Fig. 6 Initial observation of cabinet environment.

Output of VLM based on observation in Figure 6

‘‘‘json
{
”Description”: ”On the table, there is a

wooden brown drawer cabinet
situated on the left side. Visual
center of the table is almost empty
except the robot system which is not
the point of interest. Directly on
the top side of the drawer, there is
a white cup with a handle facing
towards the drawer.”,

”Objects on table”: [
{

”Name”: ”Drawer cabinet”,
”Color”: ”Brown”

},
{

”Name”: ”Cup”,
”Color”: ”White”

}
]

}
‘‘‘

1.2 How GExp generate tasks based on observation?

Prompt of tasks generation module

You are a helpful AI assistant. You are helping to create ten
different tabletop manipulation tasks according to the provided
information. The generated tasks should in the order from easy to
hard. The first task should be the easiest one which requires a small
number of steps to realize it. The design of the latter task needs
to be based on the former. The design purpose of tasks gradually
changed from testing basic manipulation ability to long-range
planning ability.
The output format should be in the form of json:

‘‘‘json
{

”Task Name”: ”The name of generated task
”,

”Objects”: [”A list of involved objects”

],
”Task Description”: ”Necessary

description of the task”
}
‘‘‘

Rules:
* You must write the full name of object, not just its color.
* Don’t use ’all objects’, you should write them one by one.
* Task should involved robot manipulation not just observation.
* Do not create task with any assume value of distance or position,
you can use relative value to the boundary.
* You should output “‘json and “‘ showing the output is json block.

1.3 How GExp realize planning and controlling the robot?

Prompt of planning module

You are a sophisticated AI assistant tasked with creating a
multi-step plan for a robot manipulation task. Your role is to
design this plan methodically, ensuring accuracy and precision.
To successfully execute this task, please adhere to the following
guidelines and rules:
* Library Restrictions: The only permitted library is ‘numpy‘.
Please import it as ‘np‘ if necessary. Avoid using any other
libraries.
* Use Existing Functions: Do not create new functions. Only
utilize the functions that are provided.
* Variable Constraints: Avoid using variables that require user
specification or complex calculations. Instead, derive exact
values based on the given variables.
* Position and Size Considerations: Do not make assumptions
about positions or sizes.
* Adherence to BOUNDS: Ensure that all positions and
movements fall within the robot arm’s working BOUNDS. When
establishing new positions, reference the BOUNDS information
for accuracy.
* Completeness of Plan: You should output the whole plan
without using the expression like ”repeat steps 2-5 to ...”.
* Efficient Function Usage: Some high-level functions are
provided to help you finish the task. You should try to use them
to optimize the plan.
Format for the Plan:
Your plan should be structured in a series of JSON blocks, each
representing a step in the process. The format for each block is as
follows:

‘‘‘json
{

”Name”: ”Provide a name for this step.
”,

”Explanation”: ”Include a necessary
explanation about this step.”,

”Code”: ”Write the Python code to
execute this step. You should
write the code in a single line
using ’\\n’ for changing line.”

}
‘‘‘

*Note: The number of JSON blocks should correspond to the
number of steps in your plan. You should output “‘json and “‘
showing the output is json block.
Please remember that you can only use following defined
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functions:

1.4 How GExp verify the precondition or task success or
not with VLM?

Fig. 7 Initial observation and current observation of cabinet
environment. The verification condition is whether the robot arm
has grasped the milk box.

Prompt of verification module

You are a helpful AI assistant. Your job is to determine if a
condition is satisfied or not. You will be given a description of
the condition and an RGB image capturing the current situation.
Please determine it in a step-by-step way to be sure that we have
the right answer.
To help you understand the scene, I will give you a description of
the initial scene setup and a corresponding image. So you will get
two images, the first is the initial scene image, and the second is
the current scene image.

‘‘‘json
{

”condition”: ”The box is grasped by
the robot arm”,

”initial description”: f”{
VLM_initial_observation}”,

}
‘‘‘

Output of VLM based on the observation in Figure 7

To determine if the condition ”The box is grasped by the robot
arm” is satisfied, let’s consider the two images provided:
1. Initial scene description image: This image displays the initial
setup with the cupboard, the robot arm, the table, the box, and
the yellow bottle. The box is on the table, to the left of the
yellow bottle, and not being grasped by the robot arm, which is
positioned to the right side of the box, with the gripper open and
not in contact with the box.
2. Current scene description image: This second image shows
a different state where the robot arm has moved from its initial
position, and the end-effector (gripper) of the robot arm appears
to be surrounding the box, indicating that the arm has attempted
to grab it. The yellow bottle is within the box, suggesting some
movement of objects has occurred. It is not possible to confirm
a firm grasp visually without additional cues like the arm’s grip
pressure or the box’s weight distribution. However, the change
in position coupled with the gripper’s placement around the box
strongly suggests that the robot arm is now holding the box.

Given this analysis, I can conclude that the condition ”The box is
grasped by the robot arm” is met.

1.5 HowGExp generate skill from a successful experience?

Prompt of skill generation

You are a helpful AI assistant expertise in programming robot
controlling code. You will be given with a Python script which is
used to solve a robot manipulation problem. Your task is creating
one Python function that helps people in future solve similar task
in an easier way. Your function will be send into function library
for further use.

Following rules you should follow when creating new function:
* Library Restrictions: The only permitted library is ‘numpy‘.
Please import it as ‘np‘ if necessary. Avoid using any other
libraries.
* Use Existing Functions: When creating new function, you
should use existing functions in library.
* Function should be general: The generated new function
should be general. Do not generate a function to realize the given
specific task.

Format of your response:
You should output a json block as your output, which follows the
following format:

‘‘‘json
{

”Function name”: ”
Name_of_your_function(), for
example lift_object().”,

”Description”: ”Describe the function
your created.”,

”Input”: ”What is the input of your
function.”,

”Output”: ”What is the output of your
function.”,

”Code”: ”The code of generated
function.”,

”Example”: ”You should rewrite the
code using new function.”,

”Related functions”: ”what functions
are used in this function.”

}
‘‘‘

Existing functions in function library:
f ”{existing_skills_library}”

2 ”BLOCKS WORLD” Experiment

2.1 Tasks generated in ”BLOCKS WORLD”
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Output of tasks generate module

{
{

”Task Name”: ”Pick and Place the
Purple Block”,

”Objects”: [
”purple block”

],
”Task Description”: ”The robot arm

should identify the purple
block, pick it up, and place it
at the right boundary of the
table.”

},
{

”Task Name”: ”Create a Two−Block
Stack”,

”Objects”: [
”purple block”,
”blue block”

],
”Task Description”: ”The robot needs

to stack the purple block on
top of the blue block.”

},
{

”Task Name”: ”Create a Three−Block
Stack”,

”Objects”: [
”purple block”,
”blue block”,
”green block”

],
”Task Description”: ”The robot arm

should pick up the green block
and place it on top of the
stack of the purple and blue
blocks.”

},
{

”Task Name”: ”Color Match and Stack”
,

”Objects”: [
”purple block”,
”blue block”,
”green block”,
”yellow block”,
”orange block”,
”red block”

],
”Task Description”: ”The task is to

create three stacks of two
blocks each, where each stack
contains blocks of
complementary colors. For
example, one stack could have
the purple and yellow blocks,
the second could have the blue
and orange blocks, and the
third could have the green and
red blocks.”

},
{

”Task Name”: ”Block Pyramid Stacking
”,

”Objects”: [
”yellow block”,
”orange block”,
”red block”

12 CAAI Artificial Intelligence Research | VOL 1| March 2022| 1–5



Growing from Exploration ARTICLEGrowing from Exploration ARTICLEGrowing from Exploration ARTICLE

],
”Task Description”: ”The robot needs

to stack the blocks into a
pyramid shape in the center of
the table. The bottom layer
would consist of the yellow and
orange blocks side by side,
and the red block should be
placed on top.”

},
{

”Task Name”: ”Complex Pyramid
Construction”,

”Objects”: [
”purple block”,
”blue block”,
”green block”,
”yellow block”,
”orange block”

],
”Task Description”: ”The robot needs

to stack all the blocks into a
pyramid with three levels in
the center of table. The bottom
level should consist of the
purple, blue, and green blocks.
The middle level should have
the yellow and orange blocks.
The red block should be on top.
The robot needs to plan the
sequence and positions of its
movements carefully to build
the pyramid without knocking
any blocks over.”

}
}

2.2 Skills generated in ”BLOCKS WORLD”

{
”pick_and_place_object(object_name,

destination)”: {
”Type”: ”function”,
”Description”: ”This function is used to

pick and place a specific object
from its current location to a
specified destination. The robot
identifies the object, picks it up,
and places it at the destination.”
,

”Input”: ”(’object_name’: str, ’
destination’: list). ’object_name’
is the name of the object to be
moved, ’destination’ is a list of 3
elements representing the
coordinates where the object will
be placed.”,

”Output”: ”None. The function only
performs actions, it does not
return any value.”,

”Related functions”: ”get_obj_position()
, get_obj_dimensions(), movep(),
close_gripper(), open_gripper(),
go_home()”,

”Code”: ”def pick_and_place_object(

object_name, destination): \\n
object_position = get_obj_position(
object_name) \\n object_dimensions
= get_obj_dimensions(object_name)
\\n BOUNDS = [[0.25, 0.75],[−0.5,
0.5],[0.0, 0.28]] \\n movep((
object_position[0], object_position
[1], object_position[2] +
object_dimensions[2])) \\n movep((
object_position[0], object_position
[1], object_position[2])) \\n
close_gripper() \\n movep((
object_position[0], object_position
[1], BOUNDS[2][1])) \\n movep((
destination[0], destination[1],
BOUNDS[2][1])) \\n movep((
destination[0], destination[1],
BOUNDS[2][0] + destination[2])) \\n
open_gripper() \\n go_home() \\n
”

},
”stack_blocks(block1, block2)”: {
”Type”: ”function”,
”Description”: ”This function is

designed to stack a specific block
on top of another block. It uses
robot functions such as ’go_home()
’, ’pick_and_place_object()’, ’
get_obj_position()’ and ’
get_obj_dimensions()’ to achieve
this task. This function will help
automate the process of block
stacking in future robot
manipulation tasks.”,

”Input”: ”Two strings, block1 and block2
, which represent the names of the
blocks to be stacked.”,

”Output”: ”None. The function performs
the action of moving the robot to
stack the blocks but doesn’t return
anything.”,

”Related functions”: ”go_home(),
pick_and_place_object(),
get_obj_position(),
get_obj_dimensions()”,

”Example”: ”stack_blocks(’purple block’,
’blue block’)”,

”Code”: ”def stack_blocks(block1, block2
):\\n go_home()\\n
pick_and_place_object(block1, list(
np.array(get_obj_position(block2))
+ np.array([0, 0,
get_obj_dimensions(block2)[2]])))\\
n go_home()”

},

”create_three_block_stack()”: {
”Type”: ”function”,
”Description”: ”This function is used to

create a three−block stack. It
first stacks the first two blocks,
then calculates the position to
place the third block, moves the
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third block to the stack, and
finally, the robot returns to the
home position.”,

”Input”: ”Three parameters: first two
blocks for initial stacking and the
third block to be placed on top of
the stack.”,

”Output”: ”The function does not return
any output. Its purpose is to
perform the action of creating a
three−block stack.”,

”Related functions”: ”stack_blocks(),
get_obj_position(),
get_obj_dimensions(),
pick_and_place_object(), go_home()”
,

”Example”: ”Example usage:
create_three_block_stack(’purple
block’, ’blue block’, ’green block
’)”,

”Code”: ”def create_three_block_stack(
first_block, second_block,
third_block): \\n # Step 1:
Stack first and second Blocks \\n

stack_blocks(first_block,
second_block) \\n # Step 2: Get
Position and Dimensions of the
Stack \\n stack_position =
get_obj_position(second_block) \\n

stack_dimensions =
get_obj_dimensions(second_block) \\
n # Step 3: Calculate Position
to Place third Block \\n
third_block_position = (
stack_position[0], stack_position
[1], stack_position[2] +
stack_dimensions[2]/2 +
get_obj_dimensions(third_block)
[2]/2) \\n # Step 4: Move third
Block to the Stack \\n
pick_and_place_object(third_block,
third_block_position) \\n # Step
5: Return to Home Position \\n
go_home()”

},
”build_pyramid(blocks_order)”: {
”Type”: ”function”,
”Description”: ”This function is

designed to build a pyramid shape
with the blocks. It takes an array
of block names in the order from
bottom to top. The first two blocks
will be placed side by side at the
bottom. The next block will be
placed on top of the first two
blocks.”,

”Input”: ”An array of block names, from
bottom to top. For example, [’
yellow block’, ’orange block’, ’red
block’] means yellow and orange
blocks will be placed at the bottom
and red block on top.”,

”Output”: ”No output. The function
commands the robot to build the

pyramid according to the block
order.”,

”Related functions”: ”Functions used in
this function are:
pick_and_place_object(),
get_obj_position(),
get_obj_dimensions(), go_home().”,

”Example”: ”Example of usage:
build_pyramid([’yellow block’, ’
orange block’, ’red block’])”,

”Code”: ”def build_pyramid(blocks_order)
: \\n # Step 1: Move first block
to the right boundary \\n
pick_and_place_object(blocks_order
[0], [BOUNDS[0][1], BOUNDS[1][0],
BOUNDS[2][0]]) \\n # Step 2: Move
second block next to the first
block \\n first_block_position =
get_obj_position(blocks_order[0])
\\n first_block_dimensions =
get_obj_dimensions(blocks_order[0])
\\n second_destination = [
first_block_position[0] +
first_block_dimensions[0],
first_block_position[1],
first_block_position[2]] \\n
pick_and_place_object(blocks_order
[1], second_destination) \\n #
Step 3: Stack third block on top of
the first and second blocks \\n
second_block_position =
get_obj_position(blocks_order[1])
\\n third_destination = [(
first_block_position[0] +
second_block_position[0]) / 2,
first_block_position[1],
first_block_position[2] +
first_block_dimensions[2]] \\n
pick_and_place_object(blocks_order
[2], third_destination) \\n # Step
4: Return to home position \\n
go_home()”

}
}
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3 RLBench Experiment

3.1 RLBench-based environments

Fig. 8 Environments in RLBench. Left are 9 environments
for exploration and skill acquisition. Middle and right are
environments of Desktop Organization and Cup Acquisition
respectively.

To test the capability of GExp in daily tasks, we first utilize nine
environments in RLBench, which are shown in Figure 8.

Turning on a Lamp: There are a lamp and a button on the table. Robot
can turn the lamp on by pressing the button.

Pressing Buttons: There are 3 buttons on the table. Robot can
press them sequentially. This process can be seen in daily tasks, such as
microwaving food. This environment is more complex than Turning on a
Lamp.

Moving Object to Containers: One large container and two small
containers are on the table. Several objects are in the larger container.
Robot can explore and acquire some basic picking or placing skills in this
environment.

Clearing Rubbish: One rubbish bin, two tomatoes and one paper
rubbish are on the table. Robot is hoped to clear the rubbish by picking
and placing it into the bin.

Arranging Bookshelf : A bookshelf is placed on the table. Two books
are on the top of the bookshelf. Robot can try to place them in the bookshelf.

Arranging Cupboard: A sugar box and a milk bottle are on the table.
A cupboard is near the table. The sugar box and the milk bottle can be
transferred into the cupboard by robot.

Manipulating Drawer: A three-layer drawer is put on the table.
Different from above environments, this environment involves articulated
object.

Manipulating Microwave: A microwave is placed on the table. Robot
can try to open and close it.

Placing Cup to Cabinet: A cabinet and a cup are on the table. The
cabinet has two doors, which can be opened by sliding in left or right
direction. This task combines articulated objects with non-articulated
objects.

To further prove the importance of acquired skills and backtracking
control, we also build two complex environments and tasks. Environments
are shown in Figure 8.

Desktop Organization: We combine Clear Rubbish with Arranging
Cupboard. A paper rubbish, a rubbish bin, two tomatoes, a chocolate
jello box and a strawberry jello box are placed on the table. A cupboard
is positioned nearby. In this task, we require robot to clean rubbish and
organize other objects to proper positions. This task mainly tests the long-
horizon planning and skill usage of GExp.

Cup Acquisition: There are a cup and drawer in this scene. The cup
is placed in the bottom drawer and is not observable. We require robot to
find the cup by opening drawer and place the cup on the table. In the end,
robot should close the drawer. This task is especially difficult since the steps
are highly correlated, as mentioned in 3.2.

3.2 Specific cases in RLBench-based environments

In this section, we provide some cases on backtracking-based close-
loop control and failures.

As seen in Figure 9, robot fails to place the rubbish in the rubbish
bin due to unstable grasping. However, with VLM as a verifier and the
precondition generated by LLM, robot can detect the failure and retry
to clear the rubbish. Some similar cases can be also observed in Cup
Acquisition task. For example, as is shown in Figure 10, robot does not
open the drawer fully, close the drawer, or loosens the cup occasionally,
causing the rest of task unfinished. Backtracking-based close-loop control
endows robot to reflect and adjust according to current state.

Nevertheless, GExp also fails in some cases, which are illustrated
in Figure 11. In Desktop Organization, one of boxes is knocked over
due to unstable grasping. This results unreachable poses. Therefore, in
the subsequent steps, robot fails to pick up the box. In Cup Acquisition
Organization, failures occurs more frequently, particularly in opening
drawer and picking up cup. When robot executes these two steps, there
is dilemma that the drawer is partially open but robot can not pick it, as
is shown in the third row of Figure 11. Moreover, VLM malfunctions
sporadically, regarding the drawer as a table. And randomness in
manipulation will also cause unrecoverable states.

Fig. 9 Close-loop case in Desktop Organization task. The robot
manages to detect failure and retry clearing rubbish.

Fig. 10 Close-loop cases in Cup Acquisition task. The robot
manages to reopen the drawer and re-close the drawer.
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Fig. 11 Failure cases. the falling rubbish knocks down a box,
resulting ungraspable pose for the robot. Second row: the drawer is
opened so large that the robot can not fetch the handle(the handle is
not in the reachable space of the robot arm). Third row: The robot
thinks the drawer is open but it is not opened fully so the robot can
not pick the cup up. Fourth row: The robot regards the drawer as a
table, not realizing the failure of placing the cup.

4 Real-world Experiments

4.1 Finding the cup

Conversation log of finding cup task

User:
I can’t find my tea caddy.

Controller:
{

”Thought”: ”The user can’t find their
tea caddy. The first step is to
observe the environment to locate
the missing item.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”Where is

the tea caddy?”}
}

Observer:
{

”answer”: ”The tea caddy is not
visible in the picture.”,

”observed_objs”: [”drawer”]
}

Controller:
{

”Thought”: ”The tea caddy isn’t
currently visible. However, a
drawer was observed in the
environment. It’s possible that
the tea caddy might be inside the
drawer.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”What is

inside the drawer?”}
}

Observer:
{

”answer”: ”The image does not show the
inside of the drawer, so it is
impossible to determine what is
inside it.”,

”observed_objs”: [”drawer”]
}

Controller:
{

”Thought”: ”Since I can’t see inside
the drawer, the next logical step
would be to open it and check if
the tea caddy is inside.”,

”Action”: ”execute_task()”,
”Action input”: {”Task name”: ”Open

the drawer”, ”Objects”: [”drawer”
], ”Task description”: ”The robot
arm needs to open the drawer to
check if the tea caddy is inside.”
}

}

Executor:
”open_drawer(’drawer’)”

Observer:
{

”Thought”: ”The drawer has been opened
successfully. Now I need to
observe the contents of the drawer
to see if the tea caddy is inside
.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”What is

inside the drawer now?”}
}

Observer:
{

”answer”: ”The tea caddy is in the
drawer.”,

”observed_objs”: [”drawer”, ”tea caddy
”]

}

Controller:
{

”Thought”: ”The tea caddy has been
observed inside the drawer. Now I
should inform the user about the
location of the tea caddy.”,

”Action”: ”finish()”,
”Action input”: {”message”: ”I found

your tea caddy. It is in the
drawer.”}

}

user:
Now the drawer is open, you don’t need to

open again. Move tea caddy to edge of
table and close drawer.

Controller:
{

”Thought”: ”The user wants me to move
the tea caddy to the edge of the
table and then close the drawer. I
will first move the tea caddy to
the specified location.”,

”Action”: ”execute_task()”,
”Action input”: {”Task name”: ”Move

the tea caddy”, ”Objects”: [”tea
caddy”], ”Task description”: ”The
robot arm should move the tea
caddy to the edge of the table.”}

}

16 CAAI Artificial Intelligence Research | VOL 1| March 2022| 1–5



Growing from Exploration ARTICLEGrowing from Exploration ARTICLEGrowing from Exploration ARTICLE

Executor:
”move_object_to_edge(’tea caddy’,

BOUNDS)”
”close_drawer(’drawer’)”

Controller:
{

”Thought”: ”The tea caddy has been
moved to the edge of the table
successfully. Now, I need to close
the drawer as per the user’s
request.”,

”Action”: ”execute_task()”,
”Action input”: {”Task name”: ”Close

the drawer”, ”Objects”: [”drawer”
], ”Task description”: ”The robot
arm should close the drawer.”}

}

Executor:
”close_drawer(’drawer’)”

Controller:
{

”Thought”: ”I’ve moved tea caddy to
edge of table and close drawer.
The task should be finished.”,

”Action”: ”finish()”,
”Action input”: {”message”: ”I’ve

moved tea caddy to edge of table
and close drawer.”}

}

4.2 Cleaning the table

User:
Please clean the table: put rubbish into

rubbish bin and put useful objects on
the shelf.

Controller:
{

”Thought”: ”First, I need to analyze
the environment to observe the
objects on the table, and identify
which ones are rubbish and which
ones are not.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”What

objects are on the table?”}
}

Observer:
{

”answer”: ”The objects on the table
include a green basket, a remote
control, a water bottle, a white
paper, and a yellow box.”,

”observed_objs”: [”basket”, ”remote
control”, ”water bottle”, ”paper”,
”box”]

}

Controller:
{

”Thought”: ”Next, I need to identify
which objects on the table are
rubbish. Usually, papers could be
considered as rubbish. For the
other objects, I need to confirm.”
,

”Action”: ”observe()”,
”Action input”: {”query”: ”Which

objects on the table are rubbish?”
}

}

Observer:
{

”answer”: ”The plastic bottle is
rubbish.”,

”observed_objs”: [”plastic bottle”, ”
paper”]

}

Controller:
{

”Thought”: ”Now that I know which
objects are rubbish (the plastic
bottle and the paper), I need to
find the rubbish bin to put them
in.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”Where is

the rubbish bin?”}
}

Observer:
{

”answer”: ”The rubbish bin is in the
middle of the table, slightly
towards the left side.”,

”observed_objs”: [”water bottle”, ”
remote”, ”paper”, ”box”]

}

Controller:
{

”Thought”: ”Now I know where the
rubbish bin is. I will start by
moving the rubbish into the bin.
First, I will move the plastic
bottle, followed by paper.”,

”Action”: ”execute_task()”,
”Action input”: {

”Task name”: ”Move rubbish into
bin”,

”Objects”: [”plastic bottle”, ”
paper”, ”rubbish bin”],

”Task description”: ”Pick up the
plastic bottle and paper, and
put them into the rubbish bin”

}
}

Executor:
# Move Bottle to Bin
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pick_and_place_object(’bottle’,
get_obj_position(’bottle’),
get_obj_position(’bin’))

# Move Paper to Bin
pick_and_place_object(’paper’,

get_obj_position(’paper’),
get_obj_position(’bin’))}

Controller:
{

”Thought”: ”I’ve put the rubbish into
the bin successfully. Now, I need
to move the remaining objects to
the shelf. But first, I need to
locate the shelf.”,

”Action”: ”observe()”,
”Action input”: {”query”: ”Where is

the shelf?”}
}

Observer:
{

”answer”: ”The shelf is on the right
side of the table.”,

”observed_objs”: [”cup”, ”remote”, ”
water bottle”, ”paper”, ”box”]

}

Controller:
{

”Thought”: ”Now I know where the shelf
is. I will start by moving the
remaining objects to the shelf.
First, I will move the remote,
followed by the box.”,

”Action”: ”execute_task()”,
”Action input”: {

”Task name”: ”Move objects to
shelf”,

”Objects”: [”remote control”, ”box
”, ”shelf”],

”Task description”: ”Pick up the
remote control and the box,
and put them onto the shelf”

}
}

Executor:
# Move the remote control to shelf_1
pick_and_place_object(’remote control’,

get_obj_position(’remote control’),
get_obj_position(’shelf_1’))

# Move the box to shelf_2
pick_and_place_object(’box’,

get_obj_position(’box’),
get_obj_position(’shelf_2’))

COntroller:
{

”Thought”: ”I’ve moved all the objects
to the shelf and put the rubbish
into the bin. The table should now
be clean.”,

”Action”: ”finish()”,

”Action input”: {”message”: ”I have
cleaned the table by putting
rubbish into the rubbish bin and
moving the objects onto the shelf.
”}

}
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